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bstract

Mapping of heavy metal contamination in mining and waste disposal sites usually relies on geostatistical approaches and linear stochastic
ynamics. The present paper aims to identify, using the Grassberger–Procaccia correlation dimension (CD) algorithm, the existence of a nonlinear
eterministic and chaotic dynamic behaviour in the spatial pattern of arsenic, manganese and zinc concentration in a Russian coal waste disposal
ite.

The analysis carried out yielded embedding dimension values ranging between 7 and 8 suggesting thus from a chaotic dynamic perspective that
rsenic, manganese and zinc concentration in space is a medium dimensional problem for the regionalized scale considered in this study.
This alternative nonlinear dynamics approach may complement conventional geostatistical studies and may be also used for the estimation of
isk and the subsequent screening and selection of a feasible remediation scheme in wider mining and waste disposal sites.

Finally, the synergistic effect of this study may be further elaborated if additional factors including among others presence of hot spots, density
nd depth of sampling, mineralogy of wastes and sensitivity of analytical techniques are taken into account.

2007 Elsevier B.V. All rights reserved.

lation

s
o

d
c
g
u
v
c
u

h
t

eywords: Heavy metal distribution; Nonlinear dynamics; Geostatistics; Corre

. Introduction

Activities associated with coal and mixed sulphide ore min-
ng and beneficiation result in the production of huge volumes
f reactive solid wastes and the subsequent generation of
cidic leachates containing heavy metals and metalloids caus-
ng widespread contamination of soil, surface- and groundwater
1,2].

The assessment of the degree of soil and water contamination
n wider mining and waste disposal sites is in general a quite
omplex procedure. The impacts depend among others on waste
nd leachate quality, land use, soil type, climatic conditions,
opulation characteristics, precipitation rate, flow rate of the

quatic streams, depth of the aquifer and contaminant contact or
ngestion rate; for example different impacts are anticipated in
gricultural soils, soils present in residential or industrial areas,
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E-mail address: komni@mred.tuc.gr (K. Komnitsas).

c
“
p
a
t

w

304-3894/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2007.12.063
dimension algorithms

treams with a seasonal flow, shallow depth wells and confined
r non-confined aquifers.

An important issue that has to be taken into consideration
uring risk and health assessment exercises is that only in a few
ountries exist thresholds for soil quality. For example Canadian
uidelines classify contaminated soils according to their land
se whereas Dutch guidelines provide target and intervention
alues. Another issue that has to be underlined is the lack of
ommonly used standard tests to classify wastes and leachates
nder specific environmental conditions [3,4].

Risk assessment involves calculation of ecological or
ealth risk in mining, waste disposal, industrial, agricul-
ural or residential areas as well as in ecosystems. The
onventional methodology used is based on the principle
source—pathway—target” and accounts for spatial and tem-
oral variability of contaminant patterns. A probabilistic

ssessment incorporates variability of parameters and uncer-
ainty in measurement [5,6].

Geostatistics is used to predict the extent of soil and ground-
ater contamination as well as to calculate the risk in active or

mailto:komni@mred.tuc.gr
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bandoned mining, waste disposal and urban sites, by preserv-
ng the spatial distribution and uncertainty of the estimates. It
acilitates quantification of the spatial features of soil parameters
nd enables spatial interpolation [7–12].

Most geostatistical studies consider the concentration of a
azardous element in soils and other affected media as a region-
lized variable in space and include computation and modeling
f the variogram, prediction of the concentration in non-sampled
reas by kriging and finally statistical analysis of errors [13–15].
onventional geostatistical techniques manage to deal with the
attern completion problem but may not be able to solve the
attern recognition problem [16–19]. This is mainly due to the
imited number of available samples, the lack of a properly
esigned sampling campaign, the extent of the study site, the
resence of hot spots and the limited homogeneity seen due to the
reatment of ores with varying quality using different techniques
ver long periods. When Geographical Information Systems are
sed the estimation of hazard and spatial uncertainty may be
mproved [20,21]. Care should be taken though when geostatis-
ics is used to assess the risk in cases where hot spots or different
ypes of wastes are present, especially in abandoned mining and
aste disposal sites.
The calculation of soil risk takes into account generic stan-

ards (target and intervention values) that are used to assess soil
uality and classify soils according to the extent of contami-
ation. The target values are protective levels and indicate the
esired soil quality while the intervention values are indicative
f serious contamination [22]. The assessment of risk for the
opulation is a much more complex procedure and requires the
nowledge of exposure rates over various periods as well as
he establishment of human toxicological and eco-toxicological
ntervention values. A generic methodology that combines quan-
itative probabilistic human health risk assessment and spatial
eostatistical methods has been recently proposed [23]. This
ethodology enables the calculation of human health risk from

xposure to contaminated land in a manner that preserves its
patial distribution and provides a measure of uncertainty in
he assessment. Uncertainties in mapping the probability of soil
ontamination when various heavy metals are present should
e taken into account; in addition a co-simulation technique
nvolving direct sequential simulation of a multivariable set of
ariables may be used to establish a reliable “hazard index” for
ach part of the study area [24].

The geostatistical approach that assesses the concentration
f a specific heavy metal in space as a regionalized random
r stochastic variable may often result in an inaccurate predic-
ion of its spatial variability in local and regional scale, due to
he complexity of factors affecting the origin and fate of this
pecific contaminant in various media. A number of recent stud-
es [25–28] examine the application of nonlinear deterministic
ynamics that improves the accuracy of geostatistics by taking
nto account the synergistic action of factors such as disposal of
ifferent types of wastes in the same area, varying soil horizons,

roundwater flow and transport phenomena.

Inorganic elements present in soils such as zinc, copper,
anganese, nickel and molybdenum are micronutrients that

re important constituents of enzymes and thus critical for the
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roper development of plant species. If the concentration of
specific element in soil exceeds a certain threshold then it

ecomes toxic to plants and inhibits their growth; in addition, if
his element is taken up by the plants through the root system
t may enter the food chain and become toxic to humans and
nimals [29].

The objectives of the present study are (a) to enable a dis-
inction between a possible nonlinear or chaotic and a random
ehaviour, using the spatial pattern of three pollutants, namely
rsenic, manganese and zinc in a wider coal waste disposal
ussian site, (b) to assess the number of independent param-
ters affecting the underlying dynamic system that governs the
obilization of these contaminants and (c) to define the addi-

ional factors that should be taken into account to enhance
he accuracy of the spatial estimation of heavy metals distri-
ution. This study aims to complement, rather than replace,
onventional geostatistical approaches and to consider the syn-
rgistic effect that minimizes potential limitations seen in other
tudies [30,31].

. Methodology

.1. Related notions from the theory of nonlinear dynamics

Several methodologies have been developed for the identifi-
ation of chaotic behaviour in a data series as for example the
ausdorff, the box-counting and the information dimension. The

orrelation dimension (CD) method which is used in this study
s considered as straightforward and is often in agreement with
ther methods that are used to calculate dimensions [32]. The
D method uses the correlation integral to distinguish between
haotic and stochastic behaviour (more specifically, between
ow- and high-dimensional systems). The concept of the corre-
ation integral is based on the fact that even if a process governed
y deterministic dynamics looks irregular (i.e. ‘random’), it has
limited number of degrees of freedom which are equal to the

mallest number of first-order differential equations capturing
he most important features of the dynamics. Earlier studies have
xamined the application of CD in hydrology, wastewaters flow
nd climatic changes [27,28,33,34].

Even though the most common CD applications involve pro-
essing of data series in the continuum of time, the algorithm
as been successfully applied to data series in space where
nequal delay distances are seen [35]. The main concern when
he Grassberger–Procaccia algorithm is applied in space is the
xistence of up to three independent variables, instead of one,
ffecting thus the variability of the pollutant. If only the distance,
nstead of two spatial coordinates, is used as the independent
ariable, some isotropy is implied in the spatial pattern and this
ay bias results; this is not the case though in the present study

30].
With the above limitation in mind, the square sampling grid

s converted to a data series first in the Y direction as seen in

ig. 1 and then accordingly in the X direction. The algorithm
ses the phase-space reconstruction of this spatial series. For
scalar spatial series Xi, where i = 1, 2, 3, . . . , N, (Xi is the

rsenic concentration at sample point i), the phase-space can be
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ples, where the measurement error exceeded 5%, digestion and
measurements were repeated. The statistical analysis, including
minimum, maximum, mean, median, standard deviation, as well
as the 5, 95 and 99 percentiles, of As, Mn and Zn concentration
Fig. 1. Conversion of data grid to a data series by Y axis direction.

onstructed using the method of delays (distances) presented as

j = (Xj, Xj+τ, Xj+2τ, . . . , Xj+(m−1)τ/�s), (1)

here j = 1, 2, . . ., N − (m − 1)τ/�s; m is the dimension of the
ector Yj, also called embedding dimension; and τ is the delay
istance as suitable multiplicate of the intra-sample distance �s.
or an m-dimensional phase-space, the correlation integral C(r)

s expressed as [36],

(r) = lim
N→∞

1

N2 × [number of pairs i, j whose distance|Yi − Yj

his correlation function is written more formally if the Heavi-
ide step function is used:

(r) = lim
N→∞

1

N2

N∑

i,j=1

H(r − |Yi − Yj|) (2)

here 1 ≤ i < j ≤ N; H is the Heaviside function with H(u) = 1
or u > 0 and H(u) = 0 for u ≤ 0, where u = r − |Yi − Yj|, r is the
adius of sphere centred on Yi or Yj and N is the number of
ample points in the spatial series.

If the spatial series is characterized by an attractor, then for
limited range of r it is seen that:

(r) ∝ rν (3)

here ν is the correlation exponent or the slope of ln C(r) versus
n r plot, expressed as

= lim
(r→0,N→∞)

ln C (r)

ln r
(4)

he slope is generally estimated by a least-squares fit of a straight
ine over a certain range r, called the scaling region.

The scaling of the correlation integral C(r) (i.e. the dimen-
ionality of the attractor) is defined by its slope in the ln C(r)
ersus ln r diagram [37]. When the embedding dimension m
ncreases, the slopes of the related curves tend towards a lim-
ting or saturation value, unless the underlying dynamics is a
andom process. This saturation value defines the dimension of
he attractor and a lower bound for the number of independent

ariables to simulate dynamics. Thus, in case when the value
f the correlation exponent is small, the system is mainly domi-
ated by a low-dimensional dynamics (spatial) governed by the
roperties of an attractor. The saturation value of the correlation
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r]

xponent is defined as the CD of the attractor of the spatial series.
n contrast, for systems dominated by stochastic processes, the
orrelation exponent is supposed to increase without any bound.

However, while this type of interpretation is generally consid-
red to distinguish between chaotic and random behaviour, there
ay also be certain exceptions, since the existence of a finite cor-

elation dimension is not a sufficient condition for the existence
f an attractor. As it turns out though, this may have no relevance
o the practical estimation of dimensions from time series. The
oncept of fractal dimension can be applied to time series in
wo distinct ways, either to indicate the number of degrees of
reedom in the underlying dynamic system, or to quantify the
elf-similarity of the trajectory in phase-space.

.2. Description of the site—data configuration

The area under study belongs to the wider coal mining and
aste disposal region of Tula, 200 km south of Moscow, Rus-

ia. Fig. 2 shows the main mineralogical phases present in the
astes. The concentration of the main trace elements varies
etween (in mg/kg): As 10–200, Cr 50–300, Mn 100–1600,
b 10–90, Cu 10–500, Zn 70–3000, Ni 50–300, Co 20–50, Sr
0–200 and Se 1–4. Additional information regarding the site,
he characteristics of the wastes, the potential for generation of
cidic leachates and the environmental impacts can be seen in a
revious publication [30].

135 surface samples were collected (in duplicate) from a
epth of 20 cm using a square 500 m × 500 m grid. The total
rea sampled was 34 km2 (4.5 km × 7.5 km), corresponding to
sampling density of 4 samples/km2 and covering not only

he waste disposal site but also the surrounding cultivated
reas. The samples were oven-dried, sieved, ground, dissolved
n aqua regia and analyzed by flame atomic absorption spec-
rophotometry (PerkinElmer 2100) for 23 inorganic elements,
sing Sigma–Aldrich standards. In a limited number of sam-
ig. 2. XRD pattern of Tula wastes: (1) quartz, (2) aragonite, (3) kaolin, (4)
yrite, and (5) magnetite.
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Table 1
Statistical analysis of As, Mn and Zn concentration (mg/kg)

Element Mean Standard deviation Minimum 5% Median 95% 99% Maximum

As 17.4 3.9 9.3 13 17 25 32 36
Mn 840.5 142.9 115 494 839 1182 1380 1540
Zn 164.5 122.2 1 23.9 129 406 510 749

Table 2
Russian, Canadian and Netherlands thresholds for heavy metal concentration in soils (mg/kg)

Russian Canadian Netherlands

Sandy soil Sour soil pH <5.5 Neutral soil pH >5.5 Agricultural land Residential area Industrial area Target values Intervention values
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in mg/kg) are seen in Table 1. The Russian Tentative Allow-
ble Concentration limits (TAC) for agricultural soils as well as
he Canadian [38] and Netherlands [22,39] thresholds for heavy

etals concentration in soils are seen in Table 2. No thresholds
or manganese exist either in the EU or Russian legislation; the
eason may be that manganese occurs naturally in relatively high
oncentrations in soils.

Analysis of the samples shows that 132 As values (97.8%)
nd 33 Zn (24.4%) exceed the Russian TAC for neutral soils
30]. These percentages are in fact higher since a number of soil
amples are quite sour. Therefore As and Zn as well as Mn, due to
ts toxicity and high mobility, will be further studied in detailed.
t should be underlined that 129 As values (95.56%) and 38 Zn
28.15%) exceed the Canadian guidelines for agricultural soils
hereas only one Zn (0.74%) and no As values (0%) exceed

he Netherlands intervention values. To further underline the
omplexity in this issue, it is mentioned that the UK guidelines
uggest as maximum tolerable limit for As in soil 20 mg/kg.

Of the three elements studied, the most important for coal
ining and waste disposal sites is manganese, which due to its

igh mobility migrates easily and contaminates surface streams
nd groundwater. Its favored oxidation stages are II, III and IV,
hile its oxidation and precipitation is more efficient at high

H and Eh values [40,41]. Manganese is not considered as eco-
oxic as other common contaminants such as Fe, Al and Zn but
t is one of the most difficult to remove pollutants from acidic
eachates generated in coal waste disposal sites. Under mild oxi-

e
fi
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Fig. 3. Phase portraits of As a
12 12 29 55
200 360 140 720

izing conditions Mn is in the +4 valence state and forms an
nsoluble precipitate, MnO2, while under reducing conditions
s converted to the +2 valence state and is present as soluble

n2+ cation. The concentration of dissolved Mn in solutions
leachates) generated in coal waste disposal sites may be deter-
ined by the precipitation of amorphous pyrocroite, Mn(OH)2.
orption and ion-exchange are processes that affect dissolved
n concentration and assess the severity of groundwater con-

amination when manganese containing leachates infiltrate soils
nd other formations overlying the aquifer [42].

. Results and discussion

.1. Evidence of chaotic behaviour

A first evidence of chaotic behaviour is seen from the covari-
nce functions of arsenic, manganese and zinc concentrations
30], which exhibit cycling fluctuations after reaching their sill
alue [35]. Phase portrait is a valuable tool that can be used
o assess data behaviour, either random or chaotic [36]. Such
hase portraits of the different contaminant concentrations were
rawn in two and three dimensions, as described in the previous
ection. An appropriate delay distance τ equal to 1500 m was

mployed, using the length that the covariance function takes the
rst zero value [34]. These phase portraits, seen in Figs. 3 and 4
or As and Mn respectively, indicate a chaotic rather than a pure
oise behaviour.

nd Mn concentrations.
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Fig. 6. Relationship between ln C(r) and distance ln(r) for Zn.

Fig. 4. 3D phase portrait of As concentrations.

A similar behaviour is seen for Zn and for most other con-
aminants present in wastes (data not shown).

.2. Correlation dimension analysis

In order to elaborate the relationship between correlation
xponent and embedding dimension, all contaminant concentra-
ions were first converted to data series in each Y and X directions
espectively, as seen in Fig. 5 for As. This as well as the following
imilar figures created following the steps described in detail in
he previous section. The saturation of slope ln C(r)/ln(r), seen
n Figs. 6–8, provides evidence of possible nonlinear determin-
stic and chaotic dynamic behaviour [25,35]. This calculated
aturation correlation exponent value (also known as CD) is

lmost identical in each X or Y direction, as seen in Fig. 5 for
he concentration of As; therefore in the respective figures no
onversion results are presented for Zn and Mn in the second
irection.

Fig. 7. Relationship between ln C(r) and distance ln(r) for Mn.

Fig. 5. Relationship between ln C(r) vs. distance ln(r) in Y and X conversions for As.
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ig. 8. Relationship between correlation dimension and embedding dimension
or As.

The As CD value lies between 3 and 4 while the embedding
imension at which this saturation occurs is almost 8 (Fig. 5).
he CD for Zn and Mn concentrations ranges between 2–3 and
–4 respectively, while the embedding dimension for both met-
ls is almost 7 (Figs. 6 and 7). This again indicates that a medium
odel structure is required to adequately capture the spatial

ariability of Zn and Mn.

.3. Spatial variability

The results of the present study indicate that a medium model
tructure, including 7–8 model parameters, is required to ade-
uately capture spatial variability of arsenic, manganese and
inc concentration at the regionalized scale used in this waste
isposal site (500 m × 500 m). These results are similar to those
resented in an earlier publication, where geostatistics under the
aximum entropy principle was considered [30] and confirm the

alidity of the conversion model used.
The fact that the number of dimensions that assess the spa-

ial distribution is almost equal for all elements, might suggest
hat the dominant processes involved so far in solubilisation
nd transport of pollutants in the waste disposal site under
tudy are similar. This was somehow anticipated for all three
lements, due to their presence in the organic part of the
astes; no traces of arsenopyrite or zinc/manganese minerals
ere detected either in the native ore or in the beneficiation
astes [43]. The effect though of physical (e.g. rain, wind)
r chemical/biological factors (e.g. soil pH, presence of bac-
eria) that determine transfer and therefore spatial variability
f contaminants cannot be easily assessed at this stage; the
haotic behaviour of these contaminants can be better defined if
he contribution of additional factors mentioned below is well
nown.

The synergistic effect of this approach on current geosta-
istical techniques used for spatial characterization and risk
ssessment in mining and waste disposal sites may be further
laborated if the following issues are considered:

density of sampling; the presence of hot spots over a large
area may influence the spatial pattern of contaminants so

that a chaotic behaviour is anticipated.
Sampling depth; it may influence the chaotic behaviour of
a contaminant concentration; it is well known that some
contaminants may be solubilised from surface and precipi-

t
f
p
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tate again in deeper soil horizons. The cost effectiveness of
deeper sampling should be also further explored.
Soil properties (e.g. moisture content, grain size, degree of
compaction, content of clay minerals); they affect the con-
centration and enhance/inhibit migration of contaminants.
Mineralogy of the wastes; it may be used for the prediction of
the extent of erosion as well as of the degree of solubilisation
and potential migration of contaminants; the degree of solu-
bilisation for contaminants present in wastes is also affected
by the beneficiation method used—the use of chemicals for
example makes the surface of the grains more reactive and
therefore susceptible to attack by various leaching agents.
Form of sulphur (sulphide, sulphate or organic); in acid
generating wastes it may be used to predict the net neutral-
ization potential and the degree of secondary solubilisation
of contaminants; it is well known that only sulphide sulphur
participates in acid generation reactions.
Sensitivity of analytical techniques used to determine the
concentration of contaminants in various media, especially
when the thresholds are low (ppb scale).

ll the above-mentioned factors may well influence the chaotic
ehaviour of a contaminant concentration and subsequently
he selection and cost effectiveness of a feasible rehabilitation
cheme.

. Conclusions

The present paper aims to identify, using the Grassberger–
rocaccia correlation dimension algorithm, the existence of a
onlinear deterministic and chaotic dynamic behaviour in the
patial pattern of arsenic, manganese and zinc contamination in a
ussian coal waste disposal site. This is a problem of great prac-

ical interest in similar sites, since in most cases sampling is not
ense or according to a properly designed sampling campaign.

The analysis carried out yielded embedding dimension values
anging between 7 and 8 suggesting thus from a chaotic dynamic
erspective that arsenic, manganese and zinc concentration in
pace is a medium dimensional problem for the regionalized
cale considered in this study.

The fact that the number of dimensions that assess the spa-
ial distribution is almost equal for all elements, might suggest
hat the dominant processes involved so far in solubilisation and
ransport of pollutants in the waste disposal site under study are
imilar. This situation may change in the future when chemical
nd or biological processes are initiated or accelerated. Evolu-
ion of such processes mainly depends on climatic conditions,
ermeability and degree of saturation of wastes. Low tempera-
ure for example hinders bacterial activity and slows down the
egree of contaminant solubilisation.

Finally, it should be underlined that this study complements
ather than replaces conventional geostatistical approaches and
onsiders a synergistic effect that minimizes potential limita-

ions encountered in other studies. This synergistic effect may be
urther elaborated if additional factors including among others
resence of hot spots, depth and density of sampling, mineralogy
f wastes and sensitivity of analytical techniques are taken into
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ccount. Assessment of the impact of these factors will enhance
ccuracy of contamination mapping, quantification of risk and
ltimately selection of a cost effective and feasible rehabilitation
cheme.
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